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We used a systems biology approach to identify and score
protein interaction subnetworks whose activity patterns
are discriminative of late stage human colorectal cancer
(CRC) versus control in colonic tissue. We conducted two
gel-based proteomics experiments to identify signifi-
cantly changing proteins between normal and late stage
tumor tissues obtained from an adequately sized cohort
of human patients. A total of 67 proteins identified by
these experiments was used to seed a search for protein-
protein interaction subnetworks. A scoring scheme based
on mutual information, calculated using gene expression
data as a proxy for subnetwork activity, was developed to
score the targets in the subnetworks. Based on this scor-
ing, the subnetwork was pruned to identify the specific
protein combinations that were significantly discrimina-
tive of late stage cancer versus control. These combina-
tions could not be discovered using only proteomics data
or by merely clustering the gene expression data. We then
analyzed the resultant pruned subnetwork for biological
relevance to human CRC. A number of the proteins in
these smaller subnetworks have been associated with the
progression (CSNK2A2, PLK1, and IGFBP3) or metastatic
potential (PDGFRB) of CRC. Others have been recently
identified as potential markers of CRC (IFITM1), and the
role of others is largely unknown in this disease (CCT3,
CCT5, CCT7, and GNA12). The functional interactions rep-
resented by these signatures provide new experimental
hypotheses that merit follow-on validation for biological
significance in this disease. Overall the method outlines a
quantitative approach for integrating proteomics data,
gene expression data, and the wealth of accumulated
legacy experimental data to discover significant protein
subnetworks specific to disease. Molecular & Cellular
Proteomics 8:827–845, 2009.

A fundamental presumption of the -omics revolution is that
high dimensional data sets resulting, for example, from pro-

teomics and genomics experiments should be integrated with
functional annotations to give a more complete account of the
cellular changes underlying the etiology of human disease.
Nevertheless the accumulation of specific gene annotations
and experimental protein or gene expression data is presently
outpacing data integration. Network modeling of protein-pro-
tein interactions provides a context for such data integration
(1–3). These modeling approaches can build networks using
databases created from literature curation, inference by ho-
mology, high throughput data, or a combination of these (4).
Network generation, analysis, and modeling are clearly fun-
damental to a new generation of systems biology approaches
that promise an improved understanding of the causes of
human disease as well as providing novel biomarkers of its
progression.

We undertook a systems biology approach to identify pro-
tein “signatures” that were significantly discriminative of late
stage human colorectal cancer (CRC)1 versus control. CRC
continues to be the second leading cause of cancer death in
adult Americans (5). Although a great deal of research is
focused on the early detection of CRC, comparably less at-
tention has been paid to understanding the pathophysiology
of a late stage (Duke’s D) phenotype. As the prognosis of a
late stage diagnosis is significantly poorer (�10% long term
survivability (5)) than one following early detection (�90% (5)),
identifying significant network-level changes in a late stage
cohort holds the possibility of more clearly elucidating the
mechanisms of tumorigenesis specific to this phenotype.

Proteomics studies of CRC using tumor and adjacent nor-
mal tissue obtained by biopsy from human patients have been
conducted (6–8). Even more studies have profiled protein
expression changes in colon cancer cell lines (9–13). How-
ever, these tissue-based studies have used either a sample
cohort of mixed pathologic stage or a cohort size that was
smaller than optimal. As colon cancer is a disease that
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progresses over a number of years and is marked by distinct
pathologic stages of increasing severity (Duke’s A–D), it is
reasonable to expect changes in the proteome that are asso-
ciated with particular stages of disease. Hence a cohort of
homogenous pathology may improve the detection of stage-
specific changes. Further we expected that the most dramatic
changes in protein expression, in terms of quantity and mag-
nitude, would be detectable between control and tumor using
a statistically robust late stage cohort.

Fig. 1 outlines our overall experimental design and empha-
sizes an integrated -omics approach to understanding the
pathophysiology of stage D colon cancer. We began by quan-
titative proteomics profiling of a late stage CRC cohort and
used the differentially expressed proteins to seed a search for
protein interaction subnetworks possibly involved in this dis-
ease (Fig. 1, steps 1–11). Our list of differentially expressed
proteins was imported into a bioinformatics data mining tool
that permits a search of a database comprised of tens of
thousands of manually curated protein-protein interactions
(14). This provided us with a list of subnetworks that we were
able to rank by significance and reduce to a subsequently
manageable number on which to focus our analysis (Fig. 1,
steps 12–14).

We seeded our initial search for subnetworks with proteom-
ics data (versus transcriptomics data) because changes in
both protein expression and isoform abundance provide the
most direct functional readout of the cell. As such, we ex-
pected our seed proteins would represent “fence posts”
within the subnetworks, each with one or more functional
roles. These subnetworks represent expansions of the cancer
proteome in the sense that the algorithm we used (see “Ex-
perimental Procedures”) builds an extended interactome
comprised of many targets around a smaller set of seed
proteins. This extended interactome, although it provides
clues to the regulatory connections that drive the observed
abundance changes, is merely qualitative and inferential.
Thus, a potential criticism of this type of approach is that a
small set of proteins that is potentially causative with respect
to a disease state has simply been expanded to a larger set
whose members may or may not be important to the pheno-
type. If the myriad of protein interaction networks (and there
are many tools to build interactomes from a set of seed
targets) are to be useful to researchers for informing new
hypotheses, new methods are needed to quantitatively eval-
uate the significance of the targets within the subnetwork that
is generated. To address this, we adapted a method de-
scribed by Ideker and co-workers (15) to score our subnet-
works, and then we systematically searched within each one
using the metric of mutual information (MI) to identify statis-
tically significant combinations of proteins that were highly
discriminative of stage D cancer versus control. Gene expres-
sion data were an ideal basis for scoring our subnetworks
because of their complete coverage, i.e. we were able to
assign an mRNA expression value to every target.

Overall our guiding principle is that protein is the immediate
effector of phenotype. Therefore, profiling changes in the
proteome is likely to provide the most direct evidence for
cellular changes causing, or resulting from, a disease. How-
ever, proteomics experiments typically have incomplete cov-
erage of the proteome. In particular, gel-based expression
experiments are most likely to detect high abundance pro-
teins. These high abundance targets may include subnetwork
nodes that participate in larger subnetworks of protein inter-
actions and may also be regulated at the level of transcription.
If so, patterns of mRNA expression can be useful for discrim-
inating between disease and non-diseased states within these
“discovered” subnetworks. Of course, mRNA expression data
have the characteristic of whole genome coverage, and these
data can enable queries for subnetworks of interest that are
“saturated.” Here we present an integrated approach to can-
cer biology, one that shows how proteomics data, genomics
data, and a vast database of legacy experimental data can be
integrated with MI scoring schemes to reveal protein signa-
tures significantly discriminative of disease. The signatures
are useful for focusing follow-on experiments to verify their
functional role in a disease phenotype. In addition, our ap-
proach is very general for use with existing public data sets as
well as newly generated data and can be applied in the
context of multiple types of protein interaction networks.

EXPERIMENTAL PROCEDURES

Sample Preparation

pI 3–10 Experiment—Tissue samples were procured from a human
tissue repository at the Case Comprehensive Cancer Center (supple-
mental Data S2). In addition to a tumor biopsy during surgical resec-
tion, a normal biopsy adjacent to the patient’s tumor was also taken,
typically �10 cm from tumor. Validation of the tissue as normal
or tumor (including stage of the tumor) was performed by a patholo-
gist. Tissues were immediately frozen and stored at �80 °C. A 50-mg
sample provided an adequate mass of protein for the 2D DIGE ex-
periment. The tissue was weighed and placed in lysis buffer (4%
CHAPS, 7 M urea, 2 M thiourea, 30 mM Tris) on ice, and the cells were
disrupted by a three-cycle sonication protocol in a 4 °C cold room. A
protease inhibitor mixture (Sigma-Aldrich, catalog number P8340)
and a wide spectrum phosphatase inhibitor (Roche Applied Science)
were added to the buffer at the manufacturer’s suggested concen-
tration to inhibit protein degradation and dephosphorylation, respec-
tively. The homogenate was centrifuged at 12,000 rpm for 10 min, and
the protein fraction was withdrawn by pipette. Protein concentration
was quantified by a colorimetric assay, similar to the Bradford assay,
using the 2D-Quant kit (GE Healthcare). Aliquots were stored at
�80 °C.

pI 4–7 Experiment—Protein fractions from the prior experiment
were thawed and cleaned with the 2D-Cleanup kit (GE Healthcare),
and the concentration was redetermined as before. Aliquots were
re-stored at �80 °C.

2D Gel Electrophoresis

We used the 2D DIGE system available from GE Healthcare (for-
merly Amersham Biosciences) described by Marouga et al. (39). This
system provides two distinct advantages over conventional 2D PAGE.
First, it allows for up to three distinct samples to be labeled by
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spectrally resolvable fluorophores (CyDyes Cy2, Cy3, and Cy5) and
multiplexed in a single gel. Second, by using one of these CyDyes
(typically Cy2) to label a pooled sample, constituted by a proportional
amount of every sample in the experiment, the Cy2 dimension is
useful as an internal standard. This internal standard is crucial in the
image analysis phase to a confident assessment of real biological
variation from gel to gel as distinct from changes arising from variance
in protein loading. For the purpose of detection by image analysis, 50
�g of protein is sufficient for labeling by each of the CyDyes. Addi-
tionally gels intended to be used for spot excision were loaded with an
additional 350 �g of an unlabeled, pooled sample sufficient for tryptic
digestion and detection of the peptides by LC-MS2.

First Dimension—Each minimal CyDye was reconstituted in fresh
N,N-dimethylformamide, and a 400-pmol quantity was used to label
50 �g of protein at pH 8–9. Cy2 was used to label the pooled internal
standard as described above. Cy3 and Cy5 were used to label the
normal and tumor samples, and we alternately swapped the dyes on
subsequent sample pairs to alleviate dye-specific effects that could
bias image analysis. Labeling proceeded for 30 min in the dark and
was quenched with 10 mM lysine. Samples were then mixed with an
equal volume of 2� sample buffer (8 mM urea, 4% CHAPS, 2% DTT,
2% Pharmylyte, pH 3–10 or 4–7, non-linear), placed on ice for 10 min,
then loaded onto non-linear pH 3–10 (or 4–7) Immobiline DryStrips
(GE Healthcare), placed in a strip holder, and focused with an IPGphor
system using a step gradient protocol ranging from 30 to 8000 V for
approximately 27 h. The strips were then stored at �80 °C, ready for
the second dimension. Additionally for the first experiment (pI 3–10),
two pooled, unlabeled 350-�g samples were prepared and focused
separately to be subsequently separated in the second dimension on
separate gels intended for spot excision. By contrast, for the second
experiment (pI 4–7), the unlabeled, pooled sample was mixed with the
labeled samples and run on the same gel. This is possible because
the Deep Purple gel stain (GE Healthcare) we used to stain the
unlabeled sample is spectrally resolvable from the CyDye fluoro-
phores. This reduces the number of gels required for the experiment.

Second Dimension—For separation by molecular weight we used
the Ettan DALT Twelve apparatus. The DryStrips were rehydrated in
10 �l of re-equilibration buffer (8 M urea, 100 mM Tris-HCl, pH 6.8,
30% glycerol, 1% SDS, 45 mg/ml iodoacetamide (to reduce streak-
ing)) for 10 min, laid across the top of a homogeneous 12.5% poly-
acrylamide gel “sandwiched” between two glass plates submerged in
running buffer (40% bisacrylamide, 1.5 Tris, 10% SDS, 10% ammo-
nium persulfate, 10% TEMED), and then covered with a 0.5% agarose
solution. Separation proceeded at 15 °C at 0.5 watts/gel and then 1.0
watt/gel for 15 h. Separation was stopped when the bromphenol dye
front reached the bottom of the gel.

Gel Fixation—Gels to be used for spot excision were previously
secured to one glass plate in the “sandwich” with silane (Bind-Silane,
GE Healthcare). After the experiment was stopped, these gels were
fixed in 50% methanol and 7.5% acetic acid and subsequently
stained with Deep Purple Total Protein Stain (GE Healthcare).

Image Analysis

Gels were scanned using a Typhoon 9400 variable mode imager
(GE Healthcare). During this phase each CyDye fluorophore is inde-
pendently excited by laser light specific to its particular excitation
spectrum. Emission sensitivity, i.e. photo multiplier tube, was ad-
justed until the most intense spot on the gel approached saturation.
This tuning was performed at a 1000-�m resolution, and once the
photo multiplier tube value was optimal, a final high resolution scan
was performed at 100 �m. The gel(s) intended to be used for spot
excision was poststained with Deep Purple (GE Healthcare), imaged
using 532/560 nm wavelength light, and then stored in the dark at
4 °C. In general, by following the recommended settings for the

Typhoon imager, our experience indicates that dye-specific biases in
spot intensity are eliminated or reduced below significance. After
imaging the three fluorophores for each gel, the images were im-
ported to the DeCyder image analysis software (GE Healthcare) for
spot detection, spot matching (intragel), and determination of statis-
tically significant biological variation (intergel) based on the measure-
ment of relative abundance change after background subtraction and
normalization to the internal standard. Typically about 90% of the
spots on a gel will fall within 2 standard deviations of the mean and
not show a significant -fold change (the null hypothesis), although this
is highly sample-dependent.

Image analysis is a time-consuming part of this experiment. A
statistically significant spot is one whose mean -fold change is greater
than or equal to �50% (depending on statistical power) and paired t
test is less than or equal to 0.05. Each spot that passes significance
must then be manually checked to ensure that it is likely a protein spot
and not a gel artifact. Satisfying these criteria, a pick list is generated
and exported to the software controlling the Ettan robotic spot picker
(GE Healthcare). Spots were excised with a 3-mm core from the
poststained gel and loaded to a 96-well plate for digestion.

In-gel Digestion

Excised gel plugs were washed four times for 10 min with 50 �l of
both 25 mM ammonium bicarbonate (ABC) and 50% ACN, removing
the liquid between each wash. 10 mM DTT freshly prepared in 30 �l of
25 mM ABC was added to each gel plug. The samples were then
incubated for 45 min at 56 °C. Following incubation, gel plugs were
cooled at room temperature for 20 min. The DTT was removed, and
30 �l of 55 mM iodoacetamide was added. The samples were incu-
bated in the dark for 45 min at room temperature. The iodoacetamide
was removed, and samples were washed four times with 50 �l of both
25 mM ABC and 50% ACN. Gel plugs were covered with 10 �l of a
100-ng trypsin solution, incubated at room temperature for 10 min to
allow absorption of trypsin, then covered with 15 �l of 25 mM ABC,
and placed in a 37 °C water bath overnight for digestion. The reaction
was quenched the following day with 7 �l of 1% (final concentration)
formic acid. Extraction of the peptides from the gel plugs was com-
pleted by adding 30 �l of 50% ACN, 5% formic acid, vortexing for 30
min, spinning the samples, and finally sonication for 5 min.

Mass Spectrometry and Database Software

Most samples were analyzed by tandem mass spectrometry using
an LTQ mass spectrometer (Thermo Electron Corp., Bremen, Ger-
many) equipped with an Ettan multidimensional LC system (GE
Healthcare). Six samples were run on a Finnigan LTQ FT hybrid mass
spectrometer (Thermo Electron Corp.) operated in positive ion mode.
2.5 �l of tryptic peptides were desalted on a C18 pre column (PepMap
100, 300 � 5-�m particle size, 100 Å, Dionex) and then separated on
a reverse-phase column (C18, 75 �m � 150 nm, 3 �m, Dionex) using
mobile phases A (0.1% formic acid) and B (84% acetonitrile, 0.1%
formic acid) with a linear gradient of 2%/min, beginning with 100% A.
Peptides were subsequently infused at a flow rate of 300 nl/min via a
Pico Tip emitter (New Objective, Inc., Woburn, MA) at a voltage of 1.8
kV. Mass spectra were recorded in the ion trap, and MS2 spectra were
acquired for the five most intense ions in the LTQ using a collision
energy of 35 eV and an isolation width of 2.5 Da.

Bioworks version 3.2 (Thermo Electron Corp.) using the SEQUEST
software was used to search against an indexed human database
with a peptide mass tolerance of 2.5 Da and a fragment tolerance of
1.0 Da. Search parameters included partial methionine oxidation,
complete carbamidomethylation of cysteine, and two missed cleav-
age sites. Statistically significant peptides were those satisfying p �
0.001 and cross-correlation (Xcorr) values of 1.9, 2.5, and 3.0 for 1�,
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2�, and 3� charged ions, respectively. The protein probability cutoff
was p � 0.001, and each “hit” necessarily required at least three
peptides for consideration with rare exceptions for low molecular
weight proteins. Surviving that filter, each protein call was manually
“rationalized” to the gel; that is the theoretical pI and molecular weight
were compared with the observed values on the gel image. Cleavage
products and post-translational modifications were considered in this
step.

Statistical Power Analysis

The power of a statistical test (1 � �) is a measure of the probability
of correctly rejecting the null hypothesis, H0, if it is false. Low power
studies consequently have a higher rate of false negatives. Formally �
is functionally related to sample size (n), the standard deviation of the
distribution (�), the difference in the means being tested (� � �0), and
the area under the standard curve at a given significance level (�)
(Z100).

n � �2
�Z100�1 � �	 � Z100�1 � �	�

��0 � �1	
2 (Eq. 1)

Prior to our second experiment we estimated the average spot vari-
ance (�) by considering all spots on all 12 gels under the assumption
that the source of variance was primarily biological and that experi-
mental variance was relatively minimal. Because the samples had
been prepared, labeled, and separated at once under near identical
conditions we thought this assumption reasonable. Next, at a fixed
level of significance (� 
 0.05) we calculated the relationship between
power and fold change (�0 � �1) at three different sample levels (n 

3, 6, and 12). This provided an estimate of the minimum number of
paired samples required to measure a particular minimum fold
change with a power of 0.8 (see supplemental Data S1).

Gene Expression Data

mRNA expression was measured by cDNA microarray on 171
human colon tissue samples of various stages of colon cancer (nor-
mal 
 16, stage B 
 41, stage C 
 25, stage D 
 50, metastatic 

39) using the Affymetrix Human EXON 1.0 ST chip. Expression values
were generated with the Expression Console program from Affymetrix
(Affymetrix, Santa Clara, CA) using the probe logarithmic intensity
error (PLIER) algorithm to minimize the effect of outliers. Expression
values for all 171 samples for select genes in our networks, plus the
decoy database of 1000 genes, were generously provided to us by
the Case Comprehensive Cancer Center. The decoy genes were
randomly chosen from �17,800 probe sets with core evidence. The
distribution of the decoy was evaluated to ensure representation
across all 23 (1–22 plus X) chromosomes (supplemental Data S3) and
was verified not to overlap any genes in our four networks. The data
set is available upon request.

Protein Interaction Network Database and Subnetwork Build
Algorithm

We used MetaCore from GeneGo Inc. (version 4.6 build 12332) to
search for protein-protein interaction networks. MetaCore uses a
protein interaction database comprising tens of thousands of protein
interactions that have been manually curated based on a thorough
reading of evidence reported in the literature. MetaCore covers 2400
journals and does not use natural language processing algorithms. In
essence, the database represents a vast wealth of legacy experimen-
tal evidence that can be quickly mined in a number of ways for
proteins and interactions relevant to a particular disease. These data
can be usefully represented by directed graphs (“networks”) that
illustrate not only which proteins interact with each other but the

functional nature of the interaction between them (binding, cleavage,
phosphorylation, etc.). We will use the term “network” to refer to the
entire database of protein interactions, and “subnetwork” will mean
any network smaller than the whole network. There are a number
of algorithms available in MetaCore with which to build subnetworks
around a set of differentially expressed targets (“seed”). We chose an
algorithm that would extend a subnetwork around our seed while
minimizing the number of outgoing and/or incoming connections
needed to enclose the seed in a “cloud” of interactions topologically
constrained by the shortest path. As this subnetwork is likely to be
very large, it is subsequently divided into smaller subnetworks by
maximizing the saturation of the seed targets in each while obeying
our input constraint of subnetwork size (n 
 50). We further con-
strained the search by species (human) and tissue type (colon); all
other prefilter options retained their default values. The end result was
a list of subnetworks (13) ranked by p value and zScore. The reported
p value is calculated assuming a hypergeometric distribution, and it
represents the probability of a particular mapping arising by chance
given the numbers of genes in the set of total networkable genes (i.e.
genes or network objects that have at least one annotated functional
interaction), all genes on maps/subnetworks/processes, genes on a
particular map/subnetwork/process, and genes in our experiment.
The zScore is a statistical measure of the concentration of the seed
targets in the subnetwork.

zScore �

r � n
R
N

�n�R
N��1 �

R
N��1 �

n � 1
N � 1�

(Eq. 2)

where N equals the total number of nodes in MetaCore database, R
equals the number of the objects of the subnetwork corresponding to
the genes in the import list, n equals the total number of nodes in each
subnetwork generated from the import list, and r equals the number
of nodes with data in each subnetwork generated from the import list.
A white paper providing additional details of network construction
algorithms is available upon request.

Network Scoring and Significance Tests

A flow chart of the scoring scheme is outlined in Fig. 5. We
obtained global gene expression data as measured by cDNA microar-
ray (for detail see “Gene Expression Data”) for every gene product in
each of the four subnetworks chosen for analysis. Importantly al-
though the search criteria constrained each subnetwork to 50 pro-
teins or less, some proteins in the subnetworks were complexes
involving multiple gene products, subunits, or isoforms. We chose to
include all these gene products when we exported the subnetwork list
of genes from MetaCore. Consequently and depending on the par-
ticular subnetwork, the number of genes may exceed 50. Additionally
the microarray data set also included five experiments that had used
microdissected epithelial cells from colonic crypts. We considered
these to be controls for the normal tissue samples because of the
homogeneous cell type, whereas the normal tissue samples had
detectable levels of stromal markers (e.g. vimentin). Hence genes with
an average expression value less than 40 (below the detection limit of
quantitative PCR) across the crypt samples were considered unex-
pressed in the epithelium layer and removed from consideration
during scoring.

Mutual Information—MI is a concept from information theory used
to measure the dependence of two random, discrete variables, say X
and Y, based on their joint and marginal distributions. A high MI score
(0 � MI � 1) indicates that X and Y are non-randomly associated to
each other, whereas in the limit an MI value of 0 indicates that the two
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variables are statistically independent. To apply the concept to our
problem, we retrieved the mRNA expression for every gene product in
each of the four networks and used these data to populate two
distributions of network activity values, one for a set of normal sam-
ples (X) and one for a set of stage D samples (Y). With these two
distributions we were able to calculate an MI score between normal
and stage D for each network and also use it as an optimization metric
to search within the network for combinations of proteins (signatures)
that would maximize this score. Intuitively a high MI score would
indicate that the corresponding proteins non-randomly associate be-
tween normal and stage D, inferring their functional importance in the
network in late stage cancer and suggesting new experiments for
elucidating mechanisms of tumorigenesis.

The raw mRNA expression values in each subnetwork were first
normalized by subtracting the population mean and dividing that
difference by the population standard deviation. Next a subnetwork
activity score was determined for each sample (column) in each
network by summing the corresponding normalized mRNA expres-
sion values (rows). The activity score across phenotypes is a random,
continuous variable that we discretized using a binning procedure.
The number of bins (Fig. 5, step 3) was determined by log2(number of
samples) � 1, which is Sturge’s rule, in the same manner as de-
scribed by Ideker and co-workers (15). The range of the bins was
determined from the range of the normalized expression values plus
or minus a small adjustment to ensure all values fell within a bin.
Finally the marginal and joint distributions were determined for the
two phenotypes being compared (normal and stage D), and the
mutual information value was computed (Fig. 5, steps 4 and 5). Note
that the example in Fig. 5 indicates that network activity values
were calculated over every patient sample (column), which as a
matter of course we did do, but we only calculated the MI between
normal and stage D consistent with the proteomics comparison. The
other values, however, were useful for testing hypothesis 2 (H2; see
Fig. 6).

Significance Testing—To test the hypothesis that the genes in a
given subnetwork were not significantly discriminative of phenotype
compared with a random selection of n genes (where n equals the
number of genes in the subnetwork being measured), we randomly
selected 1,000,000 combinations of n genes from the decoy database
to create the null distribution and then evaluated the actual MI score
of the subnetwork on the cumulative distribution function (CDF). To
test the second hypothesis, which is that the genes in our network do
not associate with a particular phenotype, we permuted the pheno-
types (columns) of the relevant array 100,000 times and evaluated
significance in the same way. The evaluation on the CDF is expressed
as a percent value. A value of, say, 95% indicates there is a 5%
chance (p 
 0.05) of observing a higher MI value, assuming the null
hypothesis is true. The programs required to import the expression
data, organize it for analysis, visualize it, and perform the scoring and
optimization search as well as the hypothesis testing were written
using Matlab and are available on request.

Label-free Mass Spectrometry: Protein -Fold Change
Determination

Sample Preparation—50 �g of total protein derived from colonic
tissue lysate was precipitated with acetone (�20 °C) at �80 °C for 20
min followed by centrifugation at 12,000 rpm for 10 min at 4 °C. The
samples were then dried, rebuffered in 20 �l of 0.2% ProteasMax
surfactant (Promega Corp., Madison, WI), and gently shaken for 30
min. The buffer volume was then increased to 93.5 �l with 50 mM

ammonium bicarbonate and incubated with 1 �l of 0.5 M DTT for 20
min at 56 °C followed by incubation with 2.7 �l of 0.55 M iodoacet-
amide for 15 min in the dark. 1 �l of 1.0% ProteasMax was added to
the buffer followed by 1.8 �l of trypsin (Promega Corp.) that had been

dissolved in 50 mM ammonium bicarbonate to a final concentration of
1 �g/�l. Digestion was carried out for 3 h at 37 °C. Peptides were
concentrated on a 100-�l C18 UtraMicroTip column (Net Group, Inc.),
eluted in 20 �l of 0.1% formic acid in 60% acetonitrile, then diluted
with UltraPure water to a final concentration of 500 ng/�l, and stored
at �80 °C.

LC-MS/MS—Analyses were performed on an LC Packings/Dionex
Ultimate 3000 HPLC-Orbitrap XL (Finnigan, San Jose, CA) system.
The HPLC system is equipped with two independent ternary gradient
pumps suitable for high throughput dual column parallel HPLC mode
applications. A standard injection volume of 10 �l was used for all the
samples, giving a total of 1 �g of digest on the column. The data
collection method incorporated a 30,000 resolution Orbitrap full scan
in the FT mode using profile mode data collection followed by
data-dependent mode MS2 acquisition of the top five precursors
from each full scan (centroid mode). CID mode fragmentation was
chosen for generating the MS2 spectra in the linear ion trap with a
standardized value of 30% normalized collision energy being cho-
sen for the fragmentation of the peptides. The LC method included
a slow, 95-min acetonitrile ramp from an initial 4.8% until a final
composition of 50.2% was achieved. Further high organic elution
was performed (5 min) to complete the elution of peptides from the
analytical column followed by equilibration of the column for suc-
ceeding analyses.

Analysis—Raw files were searched by Mascot against the IPI_Hu-
man database (ipi.HUMAN.v3.28.fasta). For each protein of interest
one tryptic peptide with tandem MS evidence in at least one of six
replicate samples was used to measure the relative expression
change between normal and tumor. Peptide abundance was deter-
mined by the area under the elution curve that was extracted from the
total chromatogram using a mass window adequate to capture all
isotopes of the observed monoisotopic mass (�10 ppm). The curves
were smoothed by an 11-point Gaussian filter and base line-sub-
tracted using the Xcalibur software (Thermo Electron Corp.). -Fold
change between normal and tumor was calculated as the ratio of the
integrated curve areas. Three replicate runs of a single sample pair
(patient 507, normal/tumor) were used to estimate technical variance.
The coefficient of variation for -fold change ranged from 6 to 39%.
The -fold change for IGFBP3 was determined by densitometry from
Western blot analysis.

RESULTS AND DISCUSSION

2D DIGE Discovery Proteomics

The features of our cohort and the overall design of our
proteomics experiments are shown in Fig. 1. Twenty-four
tissue samples (12 normal and 12 tumor, each pair from the
same patient) were prepared using standard procedures (see
“Experimental Procedures”). The tissue samples had been
vetted by a pathologist to establish tumor grade. The exper-
imental design involved alternately labeling tumor and control
samples with Cy3 and Cy5 dyes, whereas Cy2 was used to
label a 50-�g pooled fraction that served as an internal stand-
ard for each gel. The usefulness of this standard cannot be
overemphasized as it assists in providing a confident assess-
ment of real biological variation by controlling for variance in
protein loading (16). Each tripartite sample was first separated
by IEF over a broad pH range (3–10) and then by molecular
weight using 12.5% homogenous SDS-polyacrylamide gels.
All the samples were labeled and separated simultaneously
under identical conditions to minimize experimental variation
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(see “Experimental Procedures”). Each gel yields three im-
ages (Fig. 1, step 4), and along with the poststained gel used
for spot excision, a total of 37 images were imported to the
DeCyder software (GE Healthcare) for differential image anal-
ysis (i.e. spot matching) followed by statistical analysis of
biological variation. Fig. 2 is a Cy5 image representative of a
typical analytical gel (patient 5144) indicating the significant
spots matched. In total for this experiment 58 spots were
identified as significantly (p � 0.05, mean fold change �50%)
changing between normal and tumor. For the majority of these
spots DeCyder was able to detect a match on greater than 30 of
the images. In no case did that number fall below 20 or fail to be
matched on the poststained gel used for spot excision. The
spots were robotically excised from gel, digested by trypsin
overnight, and submitted to reverse-phase LC-MS2 followed by
database search. Twenty-three spots were confidently (p �

0.001, peptide and protein) identified by database search (Table
I and Fig. 2, annotated). Thirteen proteins were up-regulated in
cancer, and seven were down-regulated.

The IEF range chosen for this experiment resulted in spot
overlay in a number of regions of interest. We anticipated that
we could improve separation and focus more spots by using an
IEF range of pI 4–7. Additionally using a measure of spot vari-
ance from the first experiment, we found we only needed six

sample pairs to capture -fold changes greater than �30% while
maintaining statistical power of 0.8 (see “Statistical Power Anal-
ysis” under “Experimental Procedures”). Accordingly we per-
formed a second experiment using a subset of six sample pairs
from the first experiment (numbers 145, 321, 362, 468, 480, and
602). The protein fractions were thawed and cleaned with a kit
(2D-Cleanup kit, GE Healthcare) to remove impurities known to
interfere with proper separation. The protein concentration was
redetermined as before by colorimetric assay. We used even
more stringent criteria in the image analysis phase as compared
with experiment 1. Spots not only had to satisfy the same
statistical criteria, but additionally, for a spot to be considered
for picking, it had to have been matched by DeCyder on every
one of the 19 gel images. Using these criteria we identified 150
significantly (p � 0.05, mean -fold change �30%) changing
spots (Fig. 3). Activating the false discovery rate filter in DeCyder
(based on the method of Benjamini and Hochberg (17)), over 40
of these spots retained their significance (q � 0.05).The indi-
cated spots were excised from the gel, digested by trypsin, and
submitted to reverse-phase LC-MS2 followed by database
search. Of 150 spots, we confidently identified 67 proteins.
Thirty-five spots were up-regulated in cancer, and 32 were
down-regulated (Table II), indicative of a lack of bias toward up-
or down-regulated proteins.

FIG. 1. Experimental design. For each patient, a tripartite sample of normal (N), tumor (T), and pooled control were mixed (1); unlabeled
samples were run on separate gels for poststaining or mixed in the analytical gels (see “Experimental Procedures”). Samples were separated
by isoelectric focusing (2) and then by molecular weight (3), and each fluorophore was imaged independently (4). Using the DeCyder software,
spots were matched on an intragel basis with differential image analysis (DIA) (5) and on an intergel basis with biological variation analysis (BVA)
to assess biological variation (6). Significant spots (�fold dependent on statistical power) were selected for robotic excision (7) and digested
by trypsin (8), and the peptides were separated by reverse-phase (RP) chromatography and detected by tandem mass spectrometry (9). MS2

spectra were searched using SEQUEST (10), and identified proteins were imported to MetaCore to search for relevant networks (11). Significant
protein signatures are scored by mutual information using gene expression profiles (12); signatures are extended out one hop to infer functional
relevance (13). Resultant subnetworks were analyzed for biological relevance to CRC and new hypothesis generation (14).
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Highly Significant Late Stage CRC Signatures

As stated above, our guiding hypothesis was that the
differentially expressed proteins (“targets”) found in our ex-
periments represented nodes upstream and/or downstream
of other nodes in one or more functional subnetworks that
may be dysregulated in stage D colon cancer. Accordingly
we used the set of unique targets from both experiments
(n 
 67) to seed a search for functional subnetworks. A
detailed description of the protein interaction database we
searched and the subnetwork construction algorithm we
used is provided under “Experimental Procedures.” The
search returned 13 subnetworks, each of which contained a
variable number of between one and 12 of the seed targets.
We limited our attention to four subnetworks judged most
significant by a combination of p value and zScore. One of
these subnetworks is annotated in Fig. 4 with a breakdown
of the most significant gene ontological processes, their
percent representation in the subnetwork, the p value,
zScore, and subnetwork size, i.e. the total number of gene
products it contains. The remaining three are provided in
supplemental Data S4.

To test our hypothesis that our 67 proteomic targets were
significant for late stage CRC, we implemented a quantitative
method to score the subnetworks. Fig. 5 outlines our ap-
proach. A more detailed explanation of the scoring procedure
is provided under “Experimental Procedures.” Briefly we ob-
tained mRNA expression data for every gene product in each
of the four subnetworks from a set of unpublished microarray
experiments (Affymetrix) performed on a large cohort of clin-
ical tissue samples of varying CRC stage (Fig. 5, step 1). With
these data we computed an activity value for each subnet-
work over each normal experiment (n 
 16) and each stage D
experiment (n 
 50) (Fig. 5, step 2). The activity values rep-
resent a continuous variable and for the purpose of comput-
ing MI need to be discretized by a binning procedure (Fig. 5,
step 3). With discrete values we computed the relevant dis-
tributions (Fig. 5, step 4) and then the MI between normal and
stage D for each subnetwork. The scores are shown in Table
III (last column).

There are two null hypotheses relevant to evaluate the
significance of the MI score. The first, which we will call H1,
states that genes in a subnetwork are not discriminative of

FIG. 2. Representative gel from experiment 1 (5144). Polygons indicate spots significantly changing between normal and cancer as
determined by DeCyder. Spots identified by mass spectrometry are labeled. See Table I.
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the disease phenotype compared with a random set of
genes. For example, if the subnetwork contained 10 genes,
then any 10 genes taken at random would produce an MI
score at least as good as the real subnetwork of 10 genes
under the null hypothesis. The second, call it H2, is subtly
different; it states that the expression levels of the genes in
the subnetwork do not associate with a particular pheno-
type. For example, if the network contains 10 genes that
produce a high MI score between normal and stage D, then
under the null hypothesis scores at least as high will be
found for random permutations of phenotypes, i.e. by dis-
rupting the real association between patient and gene
expression.

From the microarray we obtained mRNA expression data
for 1000 random genes (“decoys”) and ensured that these
genes had no overlap with any of the genes in the four
subnetworks. A null distribution was estimated for testing H1
by evaluating an MI score for 1,000,000 combinations of n
random genes selected from the decoy data set where n
equals the size of the particular subnetwork being assessed.
The null distribution for H2 was estimated from 100,000 per-
mutations of the phenotypes (columns) in the two-dimen-
sional array representing a subnetwork. Significance was then
determined by evaluating the MI score on the CDF of the
respective null distribution. 1 � CDF indicates the probability
of finding a higher MI score. Probability values of 1% or less
were considered to be significant.

By this measure neither the null hypothesis for H1 nor that
for H2 could be rejected for any of the four subnetworks, i.e.
when all the gene products in the subnetwork were used to
compute its activity value (Table III, last column). We rea-
soned that this result could be attributed to how the sub-
networks were built and scored. Although all four subnet-
works were discovered by proteomics profiling and were
judged statistically significant, the individual interactions in
a subnetwork are nevertheless based in large part on a
diverse set of experiments performed in vitro and in vivo in
a variety of different tissues. Consequently although many
of the subnetworks are indicated to be active in colonic
tissue, they are not necessarily important to a metastatic
cancer phenotype. Also we observed that the subnetworks,
in terms of the nodes and edges they contain, were sensi-
tive to the parameters used to search for them, even includ-
ing the version of the database software. This results in a
certain degree of arbitrariness in the overall topology of the
subnetwork. Given these caveats the statistically insignifi-
cant MI scores were not very surprising.

However, we further hypothesized that the activity of
specific protein combinations within the subnetwork(s)
would be highly discriminative of disease. Thus, we per-
formed an exhaustive combinatorial search over each sub-
network for combinations that would maximize the MI score
between control and stage D. We did this for up to six
combinations (readily accomplished on a conventional

TABLE I
List of unique proteins (18) from a total of 20 identified by experiment 1, pI 3–10

When a protein was identified at multiple spots on the gel, the -fold change here represents the average value.

Gene Protein
NCBI

gi�number
-Fold

change
Molecular

weight
Theoretical

pI

ACADS Acyl-coenzyme A dehydrogenase, C-2 to
C-3 short chain

gi�19684166 �1.82 44,299.8 7.96

AHCY S-Adenosylhomocysteine hydrolase gi�9951915 1.51 47,799.3 5.9
ALDH2 Mitochondrial aldehyde dehydrogenase 2 gi�48256839 1.56 56,318.6 6.37
ANXA2 Annexin A2 gi�16306978 �2.46 38,594 7.77
ANXA3 Annexin III gi�12654115 1.93 36,452.7 5.69
CA1 Carbonic anhydrase I gi�4502517 �2.8 28,853.4 6.67
DLST Dihydrolipoamide succinyltransferase gi�643589 2.66 48,555 8.89
HSPD1 Heat shock protein 60 gi�77702086 2.15 61,175.5 5.59
LMNA Lamin A/C isoform 3 gi�27436948 1.55 65,208 8.5
NDUFS1 Homo sapiens similar to zinc finger

protein (LOC147947), mRNA
gi�18490405 �1.69 79,417.5 5.84

NM23A Nucleoside-diphosphate kinase A gi�35068 1.79 20,399.3 7.07
PMPCB Mitochondrial processing peptidase �

subunit precursor
gi�94538354 1.75 54,332.5 6.38

PPIA Predicted: similar to peptidylprolyl
isomerase A isoform 1

gi�89058333 1.57 24,502 7.11

SERPINF1 Pigment epithelium-derived factor gi�15217079 �1.39 46,314 5.95
SNX6 Sorting nexin 6 isoform b gi�88703041 1.52 47,775.3 5.99
TALDO1 Transaldolase 1 gi�5803187 1.24 37,517.5 6.38
TF Transferrin gi�37747855 �1.66 77,030.6 6.86
TPI1 Predicted: similar to triose-phosphate

isomerase (TIM) (triose-phosphate
isomerase) isoform 8

gi�88942747 �1.85 26,926 8.1
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desktop computer). For each subnetwork except one (sub-
network 2), the MI score steadily increased with combina-
tion number (Table III). MI scores for these specific combi-
nations (signatures) were much higher than those for any of
the subnetworks taken as a whole, and more importantly, in
each case the MI score was highly significant with respect
to both null hypotheses, H1 and H2 (Fig. 6, compare with MI
in column labeled “signature 6” in Table III). Notably the top
scoring signatures included proteins for which we had in-
dependently found direct proteomics evidence (e.g. CCT2,
HSP90AB1, SERPINA1, and CapG) as did certain other
signatures of fewer combinations. Fig. 7 highlights the gene
products (gray) from each subnetwork participating in sig-
nature 6. To extend the potential functional importance of
these signatures, we added to each directed graph those
proteins that were one hop away from the signature pro-
teins, i.e. those from the corresponding parent subnetwork
immediately up- or downstream. We briefly discuss the
proteins and functional interactions of these expanded sub-

networks in more detail in the following section. Additionally
similar to the conclusion of Ideker and co-workers (15), we
found that the signature genes did not cluster in a dendro-
gram computed using traditional distance metrics, e.g. Eu-
clidean or Spearman (data not shown), and would likely
have been overlooked by conventional gene classification
techniques.

As mentioned above, with the exception of parent net-
work 2, MI scores increased or were constant for succes-
sively larger combinations of proteins. Further we found that
combinations of less than six proteins (signatures 1–5) were
also significant when tested against the appropriate H1 and
H2 null distributions (data not shown). Indeed the relevant
distributions for smaller combinations of proteins had char-
acteristics (e.g. mean and variance) similar to those for
signature 6. If the proteins appearing in successively larger
combinations were completely different this would suggest
that our method was not sensitive to small variations in the
underlying network activity patterns. However, this is not

FIG. 3. Representative gel from experiment 2. Polygons indicate spots significantly changing between normal and cancer as determined
by DeCyder. Magenta polygons indicate that the spot passed a multiple comparison filter test (false discovery rate) in DeCyder. Labeled spots
were identified by mass spectrometry and appeared in one or more of four significant MetaCore networks. See Table II.
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TABLE II
List of unique proteins from a total of 67 identified by experiment 2, pI 4–7

Y (yes) or N (no) indicates whether the protein survived the false discovery rate (FDR) significance test. When a protein was identified at
multiple spots on the gel, the -fold change in this table usually represents the average value.

Gene Protein
NCBI

gi�number
-Fold

change
FDR

Molecular
weight

Theoretical
pI

ACTB �-Actin gi�4501885 3.54 Y 41,170 5.18
ACTG2 ACTG2 gi�49168516 3.26 N 41,898 5.2
ACTR3 ARP3 actin-related protein 3 homolog gi�5031573 1.77 N 47,432 5.54
ALDH2 Mitochondrial aldehyde dehydrogenase 2 gi�48256839 2.17 N 56,420 6.67
ANXA4 Annexin IV gi�4502105 1.43 Y 36,063 5.75
ANXA5 Annexin V gi�49168528 1.99 Y 35,941 4.78
APOH Apolipoprotein H (�2-glycoprotein I) gi�18089104 �1.52 N 38,273 7.84
ATP5B ATP synthase, H�-transporting, mitochondrial F1

complex, �
gi�32189394 �1.38 N 56,525 5.14

CA1 Carbonic anhydrase I gi�4502517 �1.77 N 28,853 6.67
CapG Gelsolin-like capping protein gi�63252913 1.69 N 38,475 5.79
CAPNS1 Calpain, small subunit 1 gi�40674605 2.68 N 28,212 4.82
CAPZA1 F-actin capping protein �-1 subunit gi�5453597 �2.59 N 32,903 5.36
CCT2 Chaperonin containing TCP1, subunit 2 gi�5453603 �1.55 Y 57,453 6
CES1 Carboxylesterase 1 isoform c precursor gi�68508957 �1.96 Y 62,354 6.15
COMT Catechol-O-methyltransferase isoform S-COMT gi�6466450 1.52 N 24,434 5.02
CTSD Cathepsin D gi�30584113 �1.47 N 44,637 6.1
CTSX Preprocathepsin P gi�3719219 �1.74 N 32,681 6.1
DPYSL2 Dihydropyrimidinase-like 2 gi�4503377 1.57 N 62,255 5.93
ECH1 Peroxisomal enoyl-coenzyme A hydratase-like

protein
gi�70995211 �1.68 N 35,972 6.68

FGB Fibrinogen, � chain preproprotein gi�70906435 6.53 N 55,893 8.23
FGG Fibrinogen �-prime chain gi�182440 1.77 N 51,464 5.19
FKBP4 FK506-binding protein 4 gi�4503729 1.59 N 51,773 5.22
HNRPF Heterogeneous nuclear ribonucleoprotein F gi�4826760 1.99 N 45,643 5.27
HNRPH1 Heterogeneous nuclear ribonucleoprotein H1 gi�5031753 �1.51 Y 49,199 5.86
HP Haptoglobin gi�4826762 �2.53 N 45,177 6.13
HPX Hemopexin gi�11321561 �1.39 N 51,643 6.6
HSP90 Heat shock protein gp96 precursor gi�15010550 2.36 N 92,412 4.61
HSP90AA1 HSP90AA1 protein gi�12654329 1.86 Y 64,350 4.96
HSP90AB1 HSP90AB1 protein gi�39644662 1.57 N 74,769 4.91
HSPA5 Heat shock 70-kDa protein 5 gi�16507237 �1.86 Y 72,289 4.92
IMPDH2 IMP (inosine monophosphate) dehydrogenase 2 gi�15277480 �1.52 N 55,770 6.46
KRT18 KRT8 protein gi�33875698 2.85 Y 55,788 5.49
KRT8 Keratin 8 gi�4504919 6.13 Y 53,672 5.38
KRT9 KRT9 protein gi�113197968 1.52 N 48,057 4.7
LDHD D-Lactate dehydrogenase isoform 2 precursor gi�37595756 6.32 Y 52,112 6.02
MAPRE1 Microtubule-associated protein, RP/EB family,

member 1
gi�6912494 2.05 N 29,981 4.87

MRLC2 Myosin regulatory light chain MRCL2 gi�15809016 1.71 Y 19,767 4.54
NNMT Nicotinamide N-methyltransferase gi�5453790 2.24 Y 29,556 5.46
OXCT Succinyl-CoA:3-ketoacid-coenzyme A transferase

1, mitochondrial precursor
gi�48146215 �1.57 N 56,159 7.21

PDIA3 Protein-disulfide isomerase-associated 3 precursor gi�21361657 �1.54 N 56,747 5.95
PDIA5 Protein-disulfide isomerase-related protein 5 gi�1710248 �1.38 N 46,171 4.81
PGAM1 Phosphoglycerate mutase 1 (brain) gi�4505753 2.62 N 28,802 6.79
PGM1 Phosphoglucomutase 1 gi�21361621 �2.18 N 61,411 6.31
PITPNA Phosphatidylinositol transfer protein, � gi�5453908 �1.35 N 31,787 6.11
PKM2 PKM2 protein gi�33870117 �1.76 Y 61,362 8.86
PMPCB Mitochondrial processing peptidase subunit �,

mitochondrial precursor
gi�40226469 1.84 N 53,475 6.3

PPA1 Inorganic pyrophosphatase gi�33875891 1.67 N 35,449 5.92
RRBP1 Ribosome-binding protein 1 gi�110611220 �1.77 Y 108,590 5.33
RUVBL2 RuvB-like 2 gi�5730023 1.57 N 51,125 5.37
SELENBP1 Selenium-binding protein 1 gi�16306550 �1.89 N 52,357 5.9
SEPT2 SEPT2 protein gi�23274163 1.74 N 42,659 6.4
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what we observed. As indicated in Table III, for each net-
work all signatures (1–6) frequently show the repeated con-
tribution of either the same protein or proteins involved in
the same complex of proteins, suggesting that the method
is sensitive to the specific interactions of functionally similar
subnetwork proteins. Even for the signatures derived from
parent subnetwork 2, the contribution of proteins capable of
phospholipase activity (PLA2 and PRDX6) appears in five of
six signatures.

Biological Relevance to CRC of Signature Proteins in
Extended Subnetworks

It merits emphasis that each of the most significant ex-
tended subnetworks (Fig. 7) contained targets for which we
had direct proteomics evidence (CCT2, HSP90AB1, SER-
PINA1, and CapG), indicating that gene products significant
by their contribution to MI maintain their significance at the
level of the proteome in late stage CRC. The most signifi-
cant targets (highlighted gray) are generally classified ac-
cording to those with a known role in CRC or a role in other
human cancers and those with no known role in cancer. The
fact that we found significant genes with a known role in
CRC can be understood as a positive control of our analyt-
ical method.

Genes with a Role in CRC—IGFBP3 (also known as IBP3) is
an insulin-like growth factor-binding protein that was recently
identified to cause apoptosis in a tumor necrosis factor-re-
lated apoptosis-inducing ligand (TRAIL)-mediated fashion in
relevant CRC cells (18). Additionally a large association study
found that paired polymorphisms in IGFBP3 and its substrate
predicted a significant increase in risk for CRC (19). The
integrin family of proteins has been well studied in CRC. They
are generally responsible for cell-cell and cell-matrix adhe-
sion. Loss of expression of certain subunits in this family has
been associated with increased neoplastic transformation in

colonic epithelium, and the specific loss of �1 (ITGB1) chains
was associated with benign to malignant transformations (20).
Notably integrins are active as heterodimers, and although
only ITGB1 contributed to the significant MI score, the sub-
network indicates that the dimer ITGB1/ITGA4 is of particular
interest. IFITM1 (IFI17) is a member of the family of interferon-
inducible transmembrane proteins. A recent study (21) pro-
posed it as a possible marker for human colorectal tumors.
The subnetwork also revealed it to be regulated at the level of
transcription by the PBAF complex, certain members of which
we also found significant. SMARCA4 (also known as BRG-1)
plays a key role in the chromatin-remodeling complex in
mammals. One study (22) showed in vivo evidence that
BRG-1 interacts with �-catenin and induces the transcription
of T-cell factor (TCF) target genes. Mutant forms of BRG-1
lacking ATPase activity disrupted this induction. TCF target
gene activation is the final consequence of the WNT signaling
pathway, mutations in which are well known to cause tumor-
igenesis in the human colon. The role of platelet-derived
growth factor receptor (PDGFR) has been well studied in
CRC along with other receptors capable of tyrosine kinase
activity and downstream signaling. One recent study (23)
found a significant association between the stromal expres-
sion of the B subunit (PDGFRB) and the metastatic potential
of CRC tumors. In addition to being overexpressed in a
number of human cancers, casein kinase II (CSNK2A2) in
CRC suppresses apoptosis by desensitizing cells to TRAIL
in a caspase-dependent manner but independent of NF-	�

(24). It has also been shown to promote survival of colon
cancer cells by increasing the expression of survivin via the
canonical transcription pathway hyperactive in CRC (TCF/
LEF (lymphoid enhancer binding factor)) (25). PLA2G12A is
a member of the family of secreted phospholipases, many
of which display distinct patterns of expression in adeno-
carcinomas (26).

TABLE II—continued

Gene Protein
NCBI

gi�number
-Fold

change
FDR

Molecular
weight

Theoretical
pI

SERPINA1 Serine (or cysteine) proteinase inhibitor, clade A
(�-1)

gi�50363219 �1.66 N 46,588 5.27

SERPINB2 Serine (or cysteine) proteinase inhibitor, clade B
(ovalbumin)

gi�62898301 1.55 Y 42,743 5.87

SERPINB6 SERPINB6 protein gi�12655087 �1.98 N 42,563 5.1
SYNCRIP Heterogeneous nuclear ribonucleoprotein Q gi�33874520 1.84 N 46,715 5.81
TAGLN Transgelin gi�48255905 4.14 N 22,596 9.4
TALDO1 Transaldolase 1 gi�5803187 1.46 Y 37,517 6.38
TCP1 H. sapiens t-complex 1 gi�30584211 �2.02 N 60,419 5.74
TF Transferrin gi�4557871 �1.54 N 77,000 6.75
TPI1 Triose-phosphate isomerase 1 gi�17389815 �1.51 N 26,624 6.5
TUBB Tubulin, � gi�18088719 �1.75 N 49,641 4.9
TXNDC4 Thioredoxin domain-containing 4 (endoplasmic

reticulum)
gi�52487191 2.55 N 46,900 5.01

TXNDC5 Thioredoxin domain-containing 5 isoform 2 gi�42794775 2.2 N 43,642 5.73
VIM Vimentin gi�47115317 �3.05 Y 53,548 4.94
YWHAZ 14-3-3 protein 
/� gi�49119653 1.99 Y 29,928 4.57
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Genes with a Role in Other Human Cancers—CapG, a
gelsolin-like capping protein, has been identified as a pos-
sible tumor suppressor gene (27), although our proteomics
screen revealed it to be up-regulated in cancer in agreement
with the mRNA expression. A closer look at this study
revealed that the authors had measured a near complete
loss of the CapG protein in a variety of primary human
cancer tissues but not colon tissue. Our evidence that the
CapG message and protein are up-regulated in CRC indi-
cates that it may have oncogenic activity in the colon.
Further we actually identified CapG at two closely spaced
but distinct spots on the gel, suggesting that post-transla-
tional modification may be important to its activity. The
human gene PLK1 (or PLK), a serine/threonine protein ki-
nase, was characterized many years ago (28), and its ex-
pression was found to strongly correlate with the mitotic
activity of a variety of tumor cell lines, including those

derived from human colon. Notably the study found that
PLK1 was not expressed in a variety of the normal human
tissues with the exception of normal colon tissue. More
recently, PLK1 was found to be overexpressed in primary
CRC tumors (29), identified as a prognostic factor for CRC
(30), and when knocked down or inhibited in human adeno-
carcinoma cells (RKO) lead to dramatic mitotic arrest (31),
thus showing promise as a possible drug target. Lastly
driver mutations in PLK1 are not unknown as was recently
revealed by a large screen for somatic mutations on over
500 protein kinases covering a large cohort of human can-
cers (32). RPS2 is a gene encoding a ribosomal protein in
the small 40 S subunit. RPS2 was found by a proteomics
screen to be a novel kinase substrate differentially phos-
phorylated in breast cancer development (33).

Genes with No Known Role in Human Cancer—A literature
search of PubMed revealed little to nothing about the role of

FIG. 4. MetaCore subnetwork. Shown is a characteristic example of one of four significant MetaCore protein interaction subnetworks
returned by a search seeded by significant proteomic targets: subnetwork 1, regulation of developmental processes. Interaction effects
are positive (green), negative (red), and unspecified (black). Red and blue circles beside certain objects indicate that the protein was
identified by proteomics, either up-regulated in cancer (red) or down-regulated in cancer (blue). Size indicates the total number of gene
products used for scoring by mutual information. Similar details for each of the other three subnetworks chosen for scoring are provided
in supplemental Data S4.
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the remaining significant subnetwork targets in human can-
cer (HSP90AB1, HIST1H2AB, TUBA4A, TUBB3, GNA12,
TRAP1, DYNLT3, CCT3, CCT5, CCT7, and POLR2D).
Guided by the evaluation of interactions on the subnetwork
along with select proteomics evidence, these targets may
merit follow-on experiments to discover their role, if any, in
late stage CRC. For example, the chaperone containing
t-complex proteins (CCTs) play a role in protein folding in
eukaryotes and are widely expressed in the cytosol. One
study did find a significant elevation of the CCT transcript in

human colon carcinomas and validated the change in pro-
tein expression by immunohistochemistry, whereas our pro-
teomics screen revealed it to be down-regulated in the
cancer tissue. Notably that study had not vetted the sam-
ples for tumor stage, highlighting the importance of stage-
specific studies. Additionally CCT3 and CCT5 were identi-
fied by microarray analysis to be significantly differentially
expressed in the epithelium of other human cancer tissues
(esophageal, breast, ovarian, and lung), but their functional
role in cancer, CRC in particular, is unknown.

FIG. 5. Flow chart showing steps required to compute MI. Gene expression values (Xs, rows) were mean-shifted to 0 across samples
(columns) (1). Normalized values were then summed to produce an activity value for each sample (2); activity scores are continuous and need
to be assigned into discrete bins for an MI calculation (3). A joint distribution matrix is calculated between two sets of samples, e.g. normal (N)
and stage D (4). MI is calculated as shown where p(x) is the marginal distribution of normal activity, p(y) is the marginal distribution of stage
D activity, and p(x,y) is the joint distribution of x and y (5).
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Significant Targets in the Developmental Process
Subnetwork Are Coordinately Regulated

We used a label-free mass spectrometry approach (see
“Experimental Procedures”) to verify the relative expression of
four of the significant targets in the developmental process
subnetwork (Fig. 7, panel 1) in a new cohort of clinical tissue
samples. The differential expression of IGFBP3 was deter-
mined by Western blot. The relative expression change be-
tween normal and stage D at the level of mRNA for each of
these targets was computed from the microarray and used for
comparison. Most all of the targets were up-regulated in
cancer in all patients at the level of mRNA and protein (Fig. 8).
Overall these data indicate coordinated regulation at the level

of mRNA and protein but also highlight the relatively large
variation of expression of both mRNA and protein across
patients. An interpretation consistent with this observation is
that subtle changes in the transcription of one or more targets
may have a synergistic effect on the activity of the other
targets in maintaining the phenotype, something the measure
of mutual information is well suited to capture and that is
consistent with our guiding hypothesis.

The Advantages of an Integrated -Omics Approach
to Cancer

Colon cancer has a strong genetic basis due to the ac-
cumulation of somatic mutations in oncogenes and tumor

TABLE III
The MI scores for each signature

Signature 1 represents the single best protein by the measure of MI, signature 2 represents the highest scoring combination of two, signature
3 represents the highest scoring combination of three, etc. MI values of the corresponding parent subnetwork (Fig. 4 and supplemental Data
S4) appear in the last column. p values are included for signature 6 and the whole parent subnetwork: pH1, probability of achieving a higher
MI value under null hypothesis H1; pH2, probability of achieving a higher MI value under null hypothesis H2. Genes in bold font indicate proteins
with direct proteomics evidence.

(MetaCore parent
network no.)

Signature 1 Signature 2 Signature 3 Signature 4 Signature 5
Signature 6

pH1

pH2

Whole network
pH1

pH2

MI(1) 0.4116 0.4326 0.4525 0.4545 0.4820 0.4981
pH1 
 0.0004
pH2 �� 0.0001

0.1774
pH1 
 0.73
pH2 
 0.63

Genes(1) PDGFRB TUBA4A
TUBB3

H2AFX
TUBA1A
TUBB3

IGFBP4
PPID

TUBA4A
TUBB3

IGFBP4
PPID

TUBA4A
TUBB3

HIST1H2AB

CapG
HIST1H2AB

IGFBP3
ITGB1

TUBA4A
TUBB3

Fig. 4,
subnetwork 1

MI(2) 0.4971 0.4981 0.4713 0.4786 0.4530 0.4628
pH1 
 0.0009
pH2 �� 0.0001

0.1668
pH1 
 0.92
pH2 
 0.82

Genes(2) PRDX6 PLA2G10
PRDX6

FOS
PLA2G10
PRDX6

CSNK2A2
HSP90AA1

PLK1
RB1

FOS
PLA2G10
PLA2G4A
PLA2G6
PRDX6

CSNK2A2
GNA12

PDGFRB
PLA2G12A

PLK1
SERPINA1

Supplemental Data S4,
subnetwork 2

MI(3) 0.4971 0.5171 0.5717 0.5717 0.6063 0.6063
pH1 
 0.0007
pH2 �� 0.0001

0.1879
pH1 
 0.42
pH2 
 0.44

Genes(3) PRDX6 CCT3
TRAP1

PPAI
TRAP1

TUBA1A

HSP90AA1
PPA1
TRAP1

TUBA1A

CCT2
CCT6A
CCT7

SMARC4A
TRAP1

CCT3
CCT5
CCT7

DYNLT3
PLK1

TRAP1

Supplemental Data S4,
subnetwork 3

MI(4) 0.4000 0.4552 0.4983 0.5057 0.5462 0.5398
pH1 
 0.0002
pH2 �� 0.0001

0.2176
pH1 
 0.92
pH2 
 0.82

Genes(4) TUBA4A NCBP2
POLR2D

RPS15A
SMARC4A
TUBA4A

ACTL6A
HSP90AB1
SMARC4A
SMARCB1

ACTL6A
IFITM1

POLR2D
SMARC4A
SYNCRIP

ACTL6A
HSP90AB1

IFITM1
POLR2D

SMARC4A
RPS2

Supplemental Data S4,
subnetwork 4
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suppressor genes. However, it is also widely accepted that
because of the resiliency of mammalian cells single gene
mutations are usually insufficient to cause this disease (34).
Although a great deal of work has been done identifying
genes involved in colon cancer as well as the canonical
pathways to which they resolve (35–37), comparatively little
work has been done to evaluate the functional protein in-
teractions derived directly from proteomics data. It is in fact
not known how genomics, transcriptomics, or proteomics
perspectives may differently inform our understanding of
colon cancer onset or progression. Classification of disease
phenotype using candidate gene, candidate RNA, or candi-
date protein target approaches has been the bedrock of
modern -omics research. However, in some cases these
single gene/protein models of disease have been disap-
pointing in follow-on studies (3). Alternative approaches,
using network and subnetwork classifiers, are currently un-
der examination. In this study, we searched for protein
subnetworks by leveraging a database built on a very large
number of legacy experiments using proteomics data as a
seed to discover subnetworks discriminative of late stage
CRC. It was thought that this approach would quickly lead
us to significant protein-protein interaction subnetworks
that would reveal the functional cause, or consequence, of
stage-specific phenotype(s). We then developed a novel
approach for searching within these subnetworks for par-
ticular signatures that are significant discriminators of the
disease phenotype using a scoring process based on gene

expression data. Computational and biostatistical methods
to unify proteomics and gene expression data are a power-
ful way of identifying novel interaction signatures involved in
late stage cancer. Although gene lists combined with rigor-
ous statistical analysis can identify significant genes whose
expression profiles cluster, the resultant gene lists alone
provide no functional information of the post-transcriptional
mechanism(s) of dysregulation.

One criticism of our approach is that gel-based proteom-
ics experiments, which provided the seed proteins for our
search, typically identify highly abundant proteins as differ-
entially expressed. Many of these are either so-called
“housekeeping” genes with a role in metabolism or in any
case may often be considered unimportant to a disease
phenotype such as cancer as they may lack transcription
factors or receptors as protein classes. However, our inte-
grated approach was able to locate these seed proteins
within regulatory subnetworks of great interest. Each of the
four subnetworks we scored included between eight and 12
proteomic targets that were directly identified. This under-
scores the usefulness of a network-based approach that
identifies specific and significant functional interactions
possibly relevant to the pathophysiology of cancer. It also
revealed the large diversity of subnetwork interactions in
which these high expressers are evidently involved. How-
ever, as the scoring shows, the entire subnetwork(s) is not
statistically significant for classifying phenotype. Only the
end product of our quantitative approach, which identified

FIG. 6. Estimated null distributions
(probability density function) for hy-
potheses H1 and H2. For the H1 null
distribution, an array of pseudo, six-
gene signatures was computed from
1,000,000 combinations of genes ran-
domly selected six at a time from the
decoy data set. The activity value for
each pseudosignature was computed
between normal and stage D followed by
the MI scores, which were then used to
populate the distribution. For the H2 null
distributions, as each signature (best six)
comprises different genes, a separate
H2 null distribution was computed for
each. First we computed an array of
100,000 (100K) random permutations of
phenotypes (n 
 171). Then using the six
genes for each signature (Table III), we
computed an activity value for 16
pseudonormals and 50 pseudostage D
samples (refer to array in Fig. 5). We then
computed 100,000 MI scores to popu-
late the H2 distributions. H1 and H2
were modeled by the generalized ex-
treme value distribution in Matlab.
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FIG. 7. Expanded subnetworks from corresponding signatures. Signature 6 proteins were expanded by one hop inside the corresponding
parent subnetwork(s) (Fig. 4 and supplemental Data S4) to infer functional relevance. Signature 6 proteins are highlighted gray; overlapping gray
circles indicate multiple members or subunits of a complex participating in the signature. See also Table III, column labeled Signature 6.
Horizontal lines demark cellular compartments. Panels 1–4 are pruned versions of the parent subnetworks, Fig. 4 and supplemental S4
(subnetworks 2–4), respectively.
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root nodes with functional interactions significant for phe-
notype, presents a focused set of testable hypotheses suit-
able for validation by perturbation experiments. Additionally
we acknowledge that different protein interaction databases
are likely to return different subnetworks given the same
target seed. However, this is most likely because present
day databases represent an undersampling of the human
interactome, coverage of which has been recently esti-
mated at less than 1% (38), and not because of any inherent
arbitrariness attributable to our approach. Indeed as cover-
age of the human interactome continues to improve, inter-
action databases are likely to converge with respect to
subnetwork selectivity.

Using the measure of mutual information to score the
networks had an advantage over other classification meth-
ods in that there is no requirement that the underlying data
be normally distributed. This made the method particularly
well suited to examining gene expression data that, for
many of the genes in our networks, exhibited non-normal
distributions of expression for particular stages of cancer. Pair-
ing this approach with exhaustive combinatorial search, versus
a greedy search, reduces the possibility that the signatures
represent a local rather than global maximum. A complete ex-
haustive search of the expression landscape for even larger
combinations of gene products (�6) is limited only by computer

power. Finally some of the proteins identified in our signatures
did not, independently, have a significant change in mRNA
expression at least not enough to be considered significant by
simple gene expression profiling. But it is certainly conceivable
that the cumulative effect of small changes in network activity
(mRNA expression) may lead to significant changes in the pro-
teome, and this was a guiding hypothesis of our study.

As high throughput methods continue to produce more
genomics and proteomics data, it will become increasingly
important to find new ways to integrate these data and to
provide precise, quantitatively significant classifications of hu-
man disease stage. These classifiers will likely be critical to
the assessment of individual phenotype important for devel-
opment of personalized medicine.
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FIG. 8. Relative expression change of signature proteins and mRNA in subnetwork 1, tumor versus normal, for three patients
(507, 534, and 540). mRNA values are the difference between the means measured using the normal samples (n 
 16) and stage D
samples (n 
 50) obtained from the microarray. Protein -fold change was determined by label-free mass spectrometry except for IGFBP3,
which was determined by Western blot. As most targets were up-regulated in the tumor, carbonic anhydrase I (CA1) is included as a
loading control to indicate that the observed up-regulation of most targets was not merely due to a greater amount of tumor digest on
column versus normal.
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